Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 160: 111670, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36076383

RESUMO

Only a few species of swiftlets in the Aerodramus and Collocalia genera can produce edible bird's nests (EBN). These saliva-cemented nests have been consumed as delicacies for centuries in Asia. Many researches have reported the aqueous extract of EBN has epidermal growth factor-like (EGF-like) activity. However, no standalone EGF has been identified in EBN. Moreover, proteome of EBN remained unclear due to lack of genomic data base of an EBN-producing swiftlet to support proteomic analysis of EBN. To address this, the first genome of the EBN-producing swiftlet, Aerodramus fuciphagus, was constructed. Orthology comparison of A. fuciphagus with 10 other avian species were conducted. The results revealed that the number of predicted paralogous coiled-coil domain-containing protein 63 (CCDC63) coding sequences (CDSs) in A. fuciphagus was found to be significantly expanded in comparison to Gallus gallus. There were 3 paralogous CCDC63 genes in the genome of A.fuciphagus. The CDSs predicted from the genome of A. fuciphagus were used to construct a database for proteomic analysis of EBN. In total, 398 proteins have been identified in EBN. The proteome of EBN was significant enriched with extracellular proteins as well as proteins related to extracellular matrix (ECM) organization and immune response. A few proteins with Ca2+-binding EGF-like domains were found in the proteome of EBN, like fibrillin-1, protocadherin fat 4 and coagulation factor X. No standalone EGF protein was identified. This indicated that the proteins with EGF-like domains might be responsible for the EGF-like activity of EBN. In addition, acidic mammalian chitinase and lysyl oxidase in EBN were found to be active when extracting with distilled water at room temperature. The current study has not just revealed the species-specific genotype of the EBN-producing swiftlet, A. fuciphagus, but also revealed the proteome of EBN. This established an important foundation for subsequently studies on efficacies of EBN.


Assuntos
Proteoma , Proteômica , Animais , Aves/genética , Aves/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Genótipo , Mamíferos , Proteoma/genética , Proteoma/metabolismo
2.
Toxins (Basel) ; 13(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34564629

RESUMO

As a sequel to our previous report of the existence of species-specific protein/peptide expression profiles (PEPs) acquired by mass spectrometry in some dinoflagellates, we established, with the help of a plasma-membrane-impermeable labeling agent, a surface amphiesmal protein extraction method (SAPE) to label and capture species-specific surface proteins (SSSPs) as well as saxitoxins-producing-species-specific surface proteins (Stx-SSPs) that face the extracellular space (i.e., SSSPsEf and Stx-SSPsEf). Five selected toxic dinoflagellates, Alexandrium minutum, A. lusitanicum, A. tamarense, Gymnodinium catenatum, and Karenia mikimotoi, were used in this study. Transcriptomic databases of these five species were also constructed. With the aid of liquid chromatography linked-tandem mass spectrometry (LC-MS/MS) and the transcriptomic databases of these species, extracellularly facing membrane proteomes of the five different species were identified. Within these proteomes, 16 extracellular-facing and functionally significant transport proteins were found. Furthermore, 10 SSSPs and 6 Stx-SSPs were identified as amphiesmal proteins but not facing outward to the extracellular environment. We also found SSSPsEf and Stx-SSPsEf in the proteomes. The potential functional correlation of these proteins towards the production of saxitoxins in dinoflagellates and the degree of species specificity were discussed accordingly.


Assuntos
Proteínas de Algas/química , Dinoflagellida/química , Proteoma/química , Proteínas de Protozoários/química , Cromatografia Líquida , Especificidade da Espécie , Espectrometria de Massas em Tandem
3.
Toxins (Basel) ; 12(8)2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32727048

RESUMO

To investigate the mechanism for the production of paralytic shellfish toxins (PST) in toxic dinoflagellates, with a 2D-gel based approach, we had made two sets of proteomic comparisons: (a) between a toxic Alexandrium catenella (AC-T) and a phylogenetically closely related non-toxic strain (AC-N), (b) between toxic AC-T grown in a medium with 10% normal amount of phosphate (AC-T-10%P) known to induce higher toxicity and AC-T grown in normal medium. We found that photosynthesis and energy production related proteins were up-regulated in AC-T when compared to AC-N. However, the same group of proteins was down-regulated in AC-T-10%P when compared to normal AC-T. Examining the relationship of photosynthesis and toxin content of AC-T upon continuous photoperiod experiment revealed that while growth and associated toxin content increased after 8 days of continuous light, toxin content maintained constant when cells were shifted from continuous light to continuous dark for 3 days. This emphasized the cruciality of light availability on toxin biosynthesis in AC-T, while another light-independent mechanism may be responsible for higher toxicity in AC-T-10%P compared to normal AC-T. Taken all together, it is believed that the interplay between "illumination", "photosynthesis", "phosphate availability", and "toxin production" is much more complicated than what we had previously anticipated.


Assuntos
Dinoflagellida/metabolismo , Metabolismo Energético , Toxinas Marinhas/metabolismo , Fotossíntese , Dinoflagellida/genética , Dinoflagellida/crescimento & desenvolvimento , Luz , Fosfatos/metabolismo , Fotoperíodo , Filogenia , Proteômica , Intoxicação por Frutos do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...